Synaptic and synaptically activated intrinsic conductances underlie inhibitory potentials in cat lateral amygdaloid projection neurons in vivo.

نویسندگان

  • E J Lang
  • D Paré
چکیده

The companion paper demonstrated that the responses of lateral amygdaloid (LAT) projection neurons to the stimulation of major input and output structures are dominated by monophasic hyperpolarizing potentials of large amplitude. To characterize the mechanisms underlying these inhibitory potentials, intracellular recordings of cortically evoked responses were obtained from morphologically and/or physiologically identified LAT projection neurons in barbiturate anesthetized cats. The reversal potential of the cortically evoked hyperpolarization was measured at its peak, and 115 ms later (tail), an interval corresponding to the peak latency of the gamma-aminobuturic acid-B (GABAB) response previously recorded in vitro. When recorded with K-acetate (KAc) pipettes, these reversal potentials were -86.9 +/- 1.6 mV (peak; mean +/- SE) and -90.7 +/- 1.7 mV (tail), suggesting that both Cl- and K+ conductances contribute throughout the cortically evoked hyperpolarization. The small, but consistent, difference between the two reversal potentials suggested that an additional slowly activating K(+)-mediated component contributed to the inhibitory postsynaptic potential (IPSP) tail. To determine whether Cl- conductances contributed to the evoked hyperpolarization, recordings were performed with KCl; the peak (-57.8 +/- 2.2 mV) and tail (-61.3 +/- 2.1 mV) reversal potentials were approximately 15-20 mV more depolarized than those recorded with KAc pipettes. However, the difference between the peak and tail reversals remained. In an attempt to block the Cl- conductance, recordings were obtained with pipettes filled with KAc or KCl and 4,4'-diisothiocyanostilbene-2,2'-disulphonic acid (DIDS), a Cl- pump blocker that also was reported to block GABAA responses. With KAc and DIDS, the initial depolarization was prolonged and the amplitude of the hyperpolarization decreased relative to that seen with KAc alone. However, with KCl and DIDS, the reversal potential was shifted to an even greater extent than with KCl pipettes with the evoked response consisting entirely of a large depolarization, which produced a spike burst. These results suggest that LAT neurons have a Cl- pump that is blocked by DIDS, but that their Cl- channels are not blocked by DIDS. To assess the contribution of K+ conductances to cortically evoked hyperpolarizing potentials, recordings were obtained with Cs-acetate pipettes. Under these conditions, the response reversed at more depolarized potentials (peak, -71.9 +/- 1.0 mV; tail, -72.0 +/- 0.9 mV) compared with KAc recordings, with no difference between the peak and tail reversal potentials. These cells also had depolarized resting potentials (-66.2 +/- 1.8 mV) compared with those of cells recorded with KAc pipettes (-73.6 +/- 1.8 mV); however, this difference was too small to attribute the shift in reversals to a redistribution of Cl- ions across the membrane. The action potentials generated by LAT neurons under Cs+ had a shoulder that prolonged their falling phase. The increased duration of the spikes was presumably due to a dendritic Ca2+ conductance because LAT amygdaloid neurons are known to possess such conductances and Cs+ blocks the delayed rectifier and some Ca(2+)-dependent K+ currents. The dramatic reduction of this shoulder by spontaneous and evoked IPSPs suggests that the activation of dendritic conductances by back-propagating somatic action potentials is regulated tightly by synaptic events. Intracellular injection of the Ca2+ chelating agent, 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (100 mM) caused a depolarization of the peak (-75.3 +/- 1.3 mV) and tail (-77.7 +/- 1.7 mV) reversal potentials during a time course of 15-45 min. Concurrently, the amplitude of the excitatory postsynaptic potential increased whereas that of the hyperpolarization decreased, suggesting that a Ca(2+)-dependent K+ conductance contributes significantly to the evoked hyperpolarization. (ABSTRACT TRUNCATED)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inhibition determines membrane potential dynamics and controls action potential generation in awake and sleeping cat cortex.

Intracellular recordings of cortical neurons in awake cat and monkey show a depolarized state, sustained firing, and intense subthreshold synaptic activity. It is not known what conductance dynamics underlie such activity and how neurons process information in such highly stochastic states. Here, we combine intracellular recordings in awake and naturally sleeping cats with computational models ...

متن کامل

Physiology of electrosensory lateral line lobe neurons in Gnathonemus petersii.

In mormyrid electric fish, sensory signals from electroreceptors are relayed to secondary sensory neurons in a cerebellum-like structure known as the electrosensory lateral line lobe (ELL). Efferent neurons and interneurons of the ELL also receive inputs of central origin, including electric organ corollary discharge signals, via parallel fibers and via fibers from the juxtalobar nucleus. To un...

متن کامل

Similar inhibitory processes dominate the responses of cat lateral amygdaloid projection neurons to their various afferents.

To investigate the impact of inhibitory processes on responses of lateral amygdaloid (LAT) neurons, intracellular recordings were obtained from identified LAT projection neurons in barbiturate-anesthetized cats. Synaptic responses evoked by perirhinal (PRH), entorhinal (ENT), basomedial, and LAT stimulation were investigated. Regardless of stimulation site, responses consisted of an excitatory ...

متن کامل

Estimation of synaptic conductances and their variances from intracellular recordings of neocortical neurons in vivo

During intense network activity, neocortical neurons are in a “high-conductance” state. To estimate the respective contributions of excitatory and inhibitory conductances in generating such states, we combined computational models with intracellular recordings obtained in cat parietal cortex in vivo. Fitting a 6uctuating-conductance model to the recordings revealed that inhibitory conductances ...

متن کامل

Compensation for variable intrinsic neuronal excitability by circuit-synaptic interactions.

Recent theoretical and experimental work indicates that neurons tune themselves to maintain target levels of excitation by modulating ion channel expression and synaptic strengths. As a result, functionally equivalent circuits can produce similar activity despite disparate underlying network and cellular properties. To experimentally test the extent to which synaptic and intrinsic conductances ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 77 1  شماره 

صفحات  -

تاریخ انتشار 1997